Improved centroids estimation for the nearest shrunken centroid classifier
نویسندگان
چکیده
منابع مشابه
Improved centroids estimation for the nearest shrunken centroid classifier
MOTIVATION The nearest shrunken centroid (NSC) method has been successfully applied in many DNA-microarray classification problems. The NSC uses 'shrunken' centroids as prototypes for each class and identifies subsets of genes that best characterize each class. Classification is then made to the nearest (shrunken) centroid. The NSC is very easy to implement and very easy to interpret, however, ...
متن کاملBoosting nearest shrunken centroid classifier for microarray data
Nearest shrunken centroid classifier (NSC) is a class of linear classifiers with built-in feature selections, and has proven useful for analyzing microarray data. The simple linear structure of the classification boundary makes NSC easy to interpret and implement, but sometimes this simple structure might fail to generalize well for some data. In this paper we propose boosting NSC to improve it...
متن کاملImproved nearest centroid classifier with shrunken distance measure for null LDA method on cancer classification problem
Null linear discriminant analysis (LDA) is a well-known dimensionality reduction technique for the small sample size problem. When the null LDA technique projects the samples to a lower dimensional space, the covariance matrices of individual classes become zero, i.e. all the projected vectors of a given class merge into a single vector. In this case, only the nearest centroid classifier (NCC) ...
متن کاملNearest shrunken centroids via alternative genewise shrinkages
Nearest shrunken centroids (NSC) is a popular classification method for microarray data. NSC calculates centroids for each class and "shrinks" the centroids toward 0 using soft thresholding. Future observations are then assigned to the class with the minimum distance between the observation and the (shrunken) centroid. Under certain conditions the soft shrinkage used by NSC is equivalent to a L...
متن کاملNearest Shrunken Centroid as Feature Selection of Microarray Data
The nearest shrunken centroid classifier uses shrunken centroids as prototypes for each class and test samples are classified to belong to the class whose shrunken centroid is nearest to it. In our study, the nearest shrunken centroid classifier was used simply to select important genes prior to classification. Random Forest, a decision tree based classification algorithm, is chosen as a classi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bioinformatics
سال: 2007
ISSN: 1367-4803,1460-2059
DOI: 10.1093/bioinformatics/btm046